Metabolism: friend and foe? (De)Toxification processes in the liver

Katharina Müller-Dott

GRK 2338

12.03.2019
Content

- Liver
- Metabolism
 - Phase I and Phase II
 - CYP450
 - First-Pass Effect
 - Enterohepatic Circulation
- Examples for Toxification Processes
- Take Home Message
Liver

• located in right upper quadrant of abdomen
• heaviest internal organ (1.5 kg)
• functions:
 ▫ bile production and excretion
 ▫ metabolism of fats, proteins and carbohydrates
 ▫ detoxification of xenobiotics
 ▫ storage of glycogen, vitamins and minerals
 ▫ blood detoxification and purification
Liver

- made up of hepatic lobules which consist of hepatocytes
- portal triad:
 - hepatic artery, portal vein and bile duct as well as lymphatic vessels and branch of vagus nerve
- xenobiotics reach liver via portal vein (from gastrointestinal tract) or via hepatic artery (from systemic circulation)
Drug Metabolism

- biotransformation of a drug or toxin in the body
 - aim: detoxification of xenobiotic
- pathways of drug metabolism can be divided into
 - phase I (modification)
 - phase II (conjugation)
 - phase III (excretion)
- drugs can undergo one of four potential biotransformations:
 - active drug to inactive metabolite
 - active drug to active metabolite
 - inactive drug to active metabolite (prodrug)
 - active drug to toxic metabolite (biotoxification)
Phase I

- Phase I
 - oxidation, reduction or hydrolysis of xenobiotics
 - aim: modification/functionlization
 - drug becomes inactive
 - **BUT** also creating active compounds (e.g. mutagens)
 - only metabolites are pharmacologically active
 - original substance is called prodrug
- important enzyme family: **cytochrome P450**
CYP450

- heme proteins located in ER
 - P450 from the spectrophotometric peak
- major enzyme involved in drug metabolism
 - 90-95% of all CYP are located in the liver
- drugs can also increase or decrease activity of various CYP enzymes
- grapefruit juice inhibits CYP 3A4-mediated metabolism
 - increased bioavailability
 - overdosing

CYP Polymorphism

• CYP polymorphism: primary cause of interindividual differences in therapeutic effects and adverse reactions to drugs

• CYP 2D6 (e.g. codein into morphine)
 ▫ poor metabolizer – little or no CYP 2D6 function
 ▫ intermediate metabolizer – slow CYP 2D6 function
 ▫ extensive metabolizer – normal CYP 2D6 function
 ▫ ultrarapid metabolizer – multiple copies of CYP 2D6 gene expressed

• CYP 2C19 (e.g. diazepam into nordazepam)
 ▫ 3-5 % no or poor CYP 2C19 function
Phase II

• Phase II (conjugation reaction)
 ▫ aim: conjugation of water-soluble groups onto the molecule -> excretion
 ▫ unlikely to be pharmacologically active
• important enzymes:
 ▫ Glutathione-S-transferase (GST)
 ▫ UDP-glucuronosyltransferase (UGT)
 ▫ Sulfotransferase (ST)
 ▫ N-acetyltransferase (NAT)

Fast vs. Slow Acetylators

- rate of acetylation is genetically determined
 - 40-70% of Americans and Caucasians are slow acetylaters
- slow acetylation may lead to higher blood levels of the drug
 -> increase in toxic reactions
- isoniazid
 - different elimination half-life (0.5-1.6 h vs. 2-5 h)
- slow acetylaters: higher risk of bladder cancer
 - amino group is hydroxylated
 -> mutagenic nitrenium ion in bladder
- fast acetylaters: higher risk of colon cancer
First-Pass Effect

- concentration of a drug is greatly reduced before it reaches the systemic circulation
 - example: morphine (oral), propranolol (oral)
 - -> low bioavailability

- **BUT**: some drugs are enhanced in potency
 - example: THC (active metabolite is 11-hydroxy-THC)

 - Morphine is metabolized into morphine-6-glucuronide (phase II) which is more potent than morphine

 https://de.wikipedia.org/wiki/Morphin
 https://www.n-tv.de/wissen/THC-synthetisch-hergestellt/article1307781.html
Enterohepatic Circulation

- circulation of drugs from the liver to the bile followed by entry into the small intestine, absorption by the enterocyte and transport back to the liver
 - longer half-time of drugs
 - extension of intoxication
- example: α-Amanitin (inhibits RNA polymerase II)

A. phalloides
Examples for Toxification
Paracetamol

- converted into hepatotoxic metabolite NAPQI
 - CYP 2E1
- detoxification by glutathion (GSH)
- in case of overdose:
 - GSH storage ↓
 - NAPQI binds to hepatic proteins resulting in acute liver injury
- antidote: N-acetylcysteine

Lewis et al., Goldfrank's toxicologic emergencies, 2009
Methanol

- Methanol shows low toxicity
 - damage optic nerve, CNS depression
- Formate and formaldehyde significantly more toxic
 - hypoxia, metabolic acidosis
- Treatment: ethanol
 - Competitive inhibitor of alcohol dehydrogenase

![Chemical Diagram](https://www.fotocommunity.de/photo/methanol-alkohol-florianm/915449y)

![Chemical Diagram](https://www.anaesthesiamcq.com/AcidBaseBook/ab8_6a.php)
N-Nitrosamine

- nicotine-derived nitrosamine ketone (NNK)
 - tobacco-specific nitrosamines
- procarcinogen that needs activation to exert its effects
 - dimethylnitrosamine -> carbenium ion
 - ultimate carcinogen

Gzman et al., Diagn Path, 2012
https://www.modernmom.com/...
Aromatic Amines

- 2-naphthylamine
 - found in cigarette smoke and roasted/grilled meat
 - glucuronidation (detoxification) or N-hydroxylation by CYP450 (toxification)
 - bladder cancer due to formation of nitrenium ion which can react with proteins, DNA and RNA

Lin & Lu, Pharm Review, 1997
Benzo[a]pyren

- polycyclic aromatic hydrocarbon
- found in automobile exhaust fumes, tobacco smoke and many foods (roasted/grilled meat)
- metabolites are mutagenic and carcinogenic

https://en.wikipedia.org/wiki/Benzo(a)pyrene
Aflatoxin

- aflatoxins are produced by certain molds
 - found e.g. in nuts, rice, spices
- metabolic activation of Aflatoxin B1 to epoxide and binding to guanine but also proteins

How to test for mutagens?

Ames Test
- identification of mutagens
- *Salmonella typhimurium*
 - carry mutations in genes involved in histidine synthesis
 - capability of tested substance to create mutation so that bacteria can grow on histidine-free medium
- mimic metabolic conditions
 - use of S9 mix
 (product of rat liver homogenate)

https://en.wikipedia.org/wiki/Ames_test
Take Home Message

• liver is one of the main organs for metabolism
 ▫ phase I and phase II
• processes in the liver that have an effect on drug
 ▫ CYP polymorphism
 ▫ first-pass effect
 ▫ enterohepatic circulation
• examples for toxification processes:
 ▫ Paracetamol
 ▫ Methanol
 ▫ N-Nitrosamine
 ▫ Aromatic amines
 ▫ Benzo[a]pyren
 ▫ Aflatoxin B1
• metabolism: friend AND foe

Metabolic Activation!
Thank You For Your Attention!

Questions?
References

• Anaesthesiamcq.com, https://www.anaesthesiamcq.com/AcidBaseBook/ab8_6a.php
• Human Anatomy and Physiology, Book by: OpenStax
• Stem.org.uk, https://www.stem.org.uk/system/files/elibrary-resources/legacy_files_migrated/33419-RSCPPharmacokineticprocessesmetabolism.pdf
CYP Polymorphism

- if CYP converts a drug that has a strong effect into a substance that has a weaker effect
 → poor metabolizers will have an exaggerated response to the drug and stronger side-effects
- if CYP converts a drug into a substance that has a greater effect
 → ultrarapid metabolizers will have an exaggerated response to the drug and stronger side-effects