# Statistics and Experimental Design in Toxicology

### Georgia Giotopoulou

### HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt



### **Comprehensive Pneumology Center**

### Lung Carcinogenesis Group

Comprehensive Pneumology Center, Ludwig-Maximilians-University and Helmholtz Zentrum München, Munich, Germany [U] https://www.helmholtz-muenchen.de/ilbd/research/cpc-experimental-pneumology/stathopoulos-lab/scientific-focus/index.html

### **Basic terms in Statistics**



### Causality ≠ correlation

### **Basic terms in Statistics**

datum: each individual piece of experimental information

data: collection of pieces of experimental information

variables: independent: <u>treatment</u> variables directly controlled (predictors or explanatory variables) dependent: <u>effect</u> variables dependent on the treatment

**population:** all the possible measures of a given set of variables

sample: represantative group

# **Basic terms in Statistics**

### AIM of Toxicological study: treatment -> effect in a biological system?

**bias:** systematic differences other than treatment between the groups (e.g. selection bias)

chance: random differences

**signal/noise ratio: 1** chance of picking up a true effect with confidence

**accuracy:** <u>quality</u> of measurements of variables/expression of the closeness of a measured value to its true value

# **precision:** <u>reproducibility</u> of a series or repeated measurements

experimental design in Toxicology



# Hypothesis testing and probability (p) values

**significance level/p value:** the probability that a difference has been erroneously declared to be significant, typically 0.05 and 0.01, corresponding to 5% and 1% chance of error

**one-tailed p value:** the probability of getting by chance a treatment effect in a specified direction as great as or greater than that observed

**two-tailed p value:** the probability of getting by chance a treatment difference in either direction that is as great as or greater than that observed

p value does not give direct information about the size of any effect

# Estimating the size of the effect

**Confidence interval (CI) 95%:** A range of values (above, below, or above and below) the sample (mean, median, mode, etc.) that has a 95% chance of containing the true value of the population (mean, median, mode); also called the fiducial limit equivalent to p < 0.05

**Cohen 's D**: estimating the size of effect taking into account the standard deviation





| Effect size | d    | Reference            |
|-------------|------|----------------------|
| Very small  | 0.01 | Sawilowsk<br>y, 2009 |
| Small       | 0.20 | Cohen,<br>1988       |
| Medium      | 0.50 | Cohen,<br>1988       |
| Large       | 0.80 | Cohen,<br>1988       |
| Very large  | 1.20 | Sawilowsk<br>y, 2009 |
| Huge        | 2.0  | Sawilowsk<br>y, 2009 |
|             |      |                      |

Statistics and experimental design in Toxicology

18/3/19

6

# Principles for experimental design in toxicologic studies

### SAMPLING

bias / chance

- ➢ independence
- ➤ replacement

sample size – power, significance level

### **EXPERIMENTAL DESIGN**

 $\succ$  replication

- $\blacktriangleright$  randomization
- concurrrent control

➢ balance

### Statistical efficiency Saving of resources

# Minimizing the role of chance

**Choice of species and strain**: responses of interest rare in untreated control group, evoked by appropriate treatment

**Dose level**: range of doses  $\rightarrow$  dose-response curve

**Duration of the experiment**: For nonfatal conditions  $\rightarrow$  ideal killing when average prevalence  $\approx 50\%$ 

### Accuracy of determinations

Sampling: without bias, independently, with replacement

### Number of animals: depends on

- The critical difference
- The false-positive rate
- The false-negative rate
- The variability in the material

experimental design in Toxicology

18/3/19





### Experimental design in toxicologic studies-Power analysis



### **Avoidance of bias**

Stratification: homogenous groups, control of confounding variables

**Balance**: simultaneous evaluation of the effect of several different factors  $\rightarrow$  <u>requirement</u>  $\rightarrow$  the contributions of the different factors can be separately distinguished and estimated

#### Randomization

Adequacy of control group (eg same route of administration)

# Experimental design – sampling methods

Population



Population

esign

# **C. Systematic sampling** employed in quality control

**A. Random sampling** Sample size: 4

### **B.Stratified sampling**

Sample size: 2+2

### D. Cluster sampling

pool already divided into separate groups  $\rightarrow$  selection of small ses of groups  $\rightarrow$ selection of a few members from each set





# Experimental design types in toxicology

<u>Blocking</u>: arrangement or sorting of the members of a population into
groups based on characteristics that may alter an experimental outcome (genetic background, sex age)

<u>**Randomization**</u>: each treatment group  $\rightarrow$  at least one member of each blocking groups Members of each block  $\rightarrow$  assigned in unbiased-random fashion

|               | Age (Weeks)   |     |      |       |       |                 |
|---------------|---------------|-----|------|-------|-------|-----------------|
| Latin Square: | Source Litter | 6-8 | 8–10 | 10-12 | 12–14 | A: control      |
|               | 1             | Α   | В    | С     | D     | B: low          |
|               | 2             | В   | С    | D     | Α     | C: intermediate |
|               | 3             | С   | D    | Α     | В     | D: high         |
|               | 4             | D   | Α    | В     | С     | -               |
|               |               |     |      |       |       |                 |

#### Statistics and experimental design in Toxicology

**Randomized block** 

18/3/19

# Experimental design types in toxicology

Factorial design: all levels of a given factor combined with all levels of every other factor in the experiment → *interaction effect, synergism, antagonism* 

- 1. No treatment
- 2. <u>Treatment A</u>
- 3. <u>Treatment B</u>
- 4. Treatment A and B

**Nested design (dependent)**: each subfactor evaluated only within the limits of a single larger factor

# Types of variables and frequency distributions

### Types of Variables (Data) and Examples of Each Type

| Classified by        | Туре      | Example                                                                    |
|----------------------|-----------|----------------------------------------------------------------------------|
| Scale                | Scalar    | Body weight                                                                |
| Continuous           | Ranked    | Severity of a lesion                                                       |
| Discontinuous        | Scalar    | Weeks until the first observation of a<br>tumor in a carcinogenicity study |
|                      | Ranked    | Clinical observations in animals                                           |
|                      | Attribute | Eye colors in fruit flies                                                  |
|                      | Quantal   | Dead/alive or present/absent                                               |
| Frequency distributi | on Normal | Body weights                                                               |
|                      | Bimodal   | Some clinical chemistry parameters                                         |
|                      | Others    | Measures of time to incapacitation                                         |
|                      |           |                                                                            |

# Types of variables and frequency distributions

Count data

Resorption sites

#### Classification of Data Commonly Encountered in Toxicology

| Type of Data                             | Examples                                                                                                                                                                                                                                |                  | Implantation sites                                                                                                                                                                                                                    |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Continuous normal                        | Body weights<br>Food consumption<br>Organ weights: absolute and relative<br>Mouse ear swelling test (MEST)<br>measurements<br>Pregnancy rates<br>Survival rates<br>Crown–rump lengths<br>Hematology (some)<br>Clinical chemistry (some) | Categorical data | Hematology (some; reticulocyte counts,<br>Howell-Jolly, WBC differentials)<br>Clinical signs<br>Neurobehavioral signs (some)<br>Ocular scores<br>GP sensitization scores<br>Mouse ear swelling test (MEST)<br>sensitization<br>Counts |  |
| Continuous but not normal<br>Scalar data | Hematology (some; WBC)<br>Clinical chemistry (some)<br>Urinalysis<br>Neurobehavioral signs (some)<br>PDI scores                                                                                                                         |                  | Dose/mortality data<br>Sex ratios<br>Histopathology data (most)                                                                                                                                                                       |  |
|                                          | Histopathology (some)                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                       |  |

Statistics and experimental design in Toxicology

### Methodology selection





# Methodology selection: Modeling



# **Statistical graphics**

**Exploration**: summarizing data, deciding on appropriate forms for further analysis

Analysis: use of graphs to evaluate aspects of data, determining outliers

**Communication and display of data:** showing important trends or relationships in the data

# **Construction of graph**





#### Forms of Statistical Graphics (by Function)

|                          | Exploration                                  |                                   |  |
|--------------------------|----------------------------------------------|-----------------------------------|--|
| Data Summary             | Two Variables                                | Three or More Variables           |  |
| Box and whisker plot     | Autocorrelation plot                         | Biplot                            |  |
| Histogram                | Cross-correlation plot                       | Cluster trees                     |  |
| Dot-array diagram        | Scatterplot                                  | Labeled scatterplot               |  |
| Frequency polygon        | Sequence plot                                | Glyphs and metroglyphs            |  |
| Ogive                    |                                              | Face plots                        |  |
| Stem and leaf diagram    |                                              | Fourier plots                     |  |
|                          |                                              | Similarity and preference maps    |  |
|                          |                                              | Multidimensional scaling displays |  |
|                          |                                              | Weathervane plot                  |  |
|                          | Analysis                                     |                                   |  |
| Distribution Assessment  | Model Evaluation and Assumption Verification | Decision Making                   |  |
| Probability plot         | Average vs. standard deviation               | Control chart                     |  |
| Q-Q plot                 | Component-plus-residual plot                 | Cusum chart                       |  |
| <i>P</i> – <i>P</i> plot | Partial residual plot                        | Half-normal plot                  |  |
| Hanging histogram        | nging histogram Residual plots Ridg          |                                   |  |
| Rootagram                |                                              | Youden plot                       |  |
| Poissonness plot         |                                              |                                   |  |
|                          | Communication and Display of Data            |                                   |  |
| Quantitative Graphics    | Summary of Statistical Analyses              | Graphical Aids                    |  |
| Line chart               | Means plot                                   | Confidence limits                 |  |
| Pictogram                | Sliding reference distribution               | Graph paper                       |  |
| Pie chart                | Notched box plot                             | Power curves                      |  |
| Contour plot             | Factor space/response                        | Nomographs                        |  |
| Stereogram               | Interaction plot                             | Sample-size curves                |  |
| Color map                | Contour plot                                 | Trilinear coordinates             |  |
| Histogram                | Predicted response plot                      |                                   |  |
|                          | Confidence region plot                       |                                   |  |

# Thank you !

## Experimental design – sampling methods

### Population



### Random sampling

Sample size: 4





### Stratified sampling

Sample size: 4



### Low-dose extrapolation / NOEL estimation



Fig. 2 Age-specific incidence rates, standardised for dose. The numbers of onsets in each group are given, and 90% confidence intervals are given as vertical lines.



Fig. 1 Dose-response relationship, standardised for age. The numbers of onsets in each group are given, and 90% confidence intervals are plotted.

# Methodology selection: Hypothesis-testing

| Table 1. Parametric and Nonparametric Statistical Methods for Quantitative Data                                                                                                                                   |                                                                                               |                                                                                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Content of analysis                                                                                                                                                                                               | Parametric                                                                                    | Nonparametric                                                                                   |  |  |  |
| Unpaired two-group comparison<br>Paired two-group comparison<br>Analysis of homogeneity of population means among multiple groups<br>Analysis of homogeneity of population means among multiple groups with block | Student's <i>t</i> -test<br>Paired <i>t</i> -test<br>One-way ANOVA<br>Randomized Block method | Wilcoxon rank-sum test<br>Wilcoxon signed rank-sum test<br>Kruskal-Wallis test<br>Friedman test |  |  |  |
| Multiple comparisons<br>Comparisons with a control group<br>All pairwise comparisons                                                                                                                              | Dunnett test<br>Tukey test                                                                    | Steel test<br>Steel-Dwass test                                                                  |  |  |  |
| Comparisons with a control group (assuming dose dependency)<br>Dose dependency analysis                                                                                                                           | Williams test<br>Regression analysis                                                          | Shirley-Williams test<br>Shirley test<br>Jonckheere test                                        |  |  |  |

### Methodology selection: Reduction of dimensionality

