Metabolism: friend and foe? (De)Toxification processes in the liver

Katharina Müller-Dott

GRK 2338

12.03.2019

Content

- Liver
- Metabolism
 - Phase I and Phase II
 - ^o CYP450
 - First-Pass Effect
 - Enterohepatic Circulation
- Examples for Toxification Processes
- Take Home Message

Liver

- located in right upper quadrant of abdomen
- heaviest internal organ (1.5 kg)
- functions:
 - bile production and excretion
 - metabolism of fats, proteins and carbohydrates
 - detoxification of xenobiotics
 - storage of glycogen, vitamins and minerals
 - blood detoxification and purification

Liver

- made up of hepatic lobules which consist of hepatocytes
- portal triad:
 - hepatic artery, portal vein and bile duct as well as lymphatic vessels and branch of vagus nerve
- xenobiotics reach liver via portal vein (from gastrointestinal tract) or via hepatic artery (from systemic circulation)

Drug Metabolism

- biotransformation of a drug or toxin in the body
 - aim: detoxification of xenobiotic
- pathways of drug metabolism can be divided into
 - phase I (modification)
 - phase II (conjugation)
 - phase III (excretion)
- drugs can undergo one of four potential biotransformations:
 - active drug to inactive metabolite
 - active drug to active metabolite
 - inactive drug to active metabolite (prodrug)
 - active drug to toxic metabolite (biotoxification)

Phase I

• Phase I

- oxidation, reduction or hydrolysis of xenobiotics
- aim: modification/functionalization
- drug becomes inactive
- BUT also creating active compounds (e.g. mutagens)
- only metabolites are pharmacologically active
 -> original substance is called prodrug
- important enzyme family: **cytochrome P450**

PDB ID: 4XR2

CYP450

- hemeproteins located in ER
 - P450 from the spectrophotometric peak
- major enzyme involved in drug metabolism
 - 90-95 % of all CYP are located in the liver
- drugs can also increase or decrease activity of various CYP enzymes
- grapefruit juice inhibits CYP 3A4-mediated metabolism
 - increased bioavailability
 - -> overdosing

CYP Polymorphism

- CYP polymorphism: primary cause of interindividual differences in therapeutic effects and adverse reactions to drugs
- CYP 2D6 (e.g. codein into morphine)
 - poor metabolizer little or no CYP 2D6 function
 - intermediate metabolizer slow CYP 2D6 function
 - extensive metabolizer normal CYP 2D6 function
 - ultrarapid metabolizer multiple copies of CYP 2D6 gene expressed
- CYP 2C19 (e.g. diazepam into nordazepam)
 - 3-5 % no or poor CYP 2C19 function

Phase II

- Phase II (conjugation reaction)
 - aim: conjugation of water-soluble groups onto the molecule
 -> excretion
 - unlikely to be pharmacologically active
- important enzymes:
 - Glutathione-S-transferase (GST)
 - UDP-glucuronosyltransferase (UGT)
 - Sulfotransferase (ST)
 - N-acetyltransferase (NAT)

Fast vs. Slow Acetylators

- rate of acetylation is genetically determined
 - 40-70 % of Americans and Caucasians are slow acetylaters
- slow acetylation may lead to higher blood levels of the drug
 -> increase in toxic reactions
- isoniazid
 - different elimination half-life (0.5-1.6 h vs. 2-5 h)
- slow acetylators: higher risk of bladder cancer
 - amino group is hydroxylated
 - -> mutagenic nitrenium ion in bladder
- fast acetylators: higher risk of colon cancer

First-Pass Effect

- concentration of a drug is greatly reduced before it reaches the systemic circulation
 - example: morphine (oral), propranolol (oral)
 - -> low bioavailability
- **BUT:** some drugs are enhanced in potency
 example: THC (active metabolite is 11hydroxy-THC)

https://de.wikipedia.org/wiki/Morphin

Morphine is metabolized into morphine-6-glucuronide (phase II) which is more potent than morphine

https://www.n-tv.de/wissen/THC-synthetisch-hergestellt-article1307781.html

Enterohepatic Circulation

- circulation of drugs from the liver to the bile followed by entry into the small intestine, absorption by the enterocyte and transport back to the liver
 - longer half-time of drugs
 - extension of intoxication
- example: α-Amanitin (inhibits RNA polymerase II)

Drug

A. phalloides

Gossauer A., Struktur und Reaktivität von Molekülen, 2006

Examples for Toxification _

Paracetamol

- converted into hepatotoxic metabolite NAPQI
 - CYP 2E1
- detoxification by glutathion (GSH)
- in case of overdose:
 - GSH storage ↓
 NAPQI binds to hepatic proteins resulting in acute liver injury
- antidote: N-acetylcysteine

Methanol

- methanol shows low toxicity
 - damage optic nerve, CNS depression
- formate and formaldehyde significantly more toxic
 - hypoxia, metabolic acidosis
- treatment: ethanol
 - competitive inhibitor of alcohol dehydrogenase


```
https://www.fotocommunity.de/photo/methanol-alkohol-florianm/9154189
```


https://www.anaesthesiamcq.com/AcidBaseBook/ab8_6a.php

N-Nitrosamine

- nicotine-derived nitrosamine ketone (NNK)
 - tobacco-specific nitrosamines
- procarcinogen that needs activation to exert its effects
 - dimethylnitrosamine -> carbenium ion
 - ultimate carcinogen

16

Aromatic Amines

https://www.modernmom.com/2c620212-051f-11e2-9d62-404062497d7e.html

- 2-naphthylamine
 - found in cigarette smoke and roasted/grilled meat
 - glucuronidation (detoxification) or N-hydroxylation by CYP450 (toxification)
 - bladder cancer due to formation of nitrenium ion which can react with proteins, DNA and RNA

Benzo[a]pyren

- polycyclic aromatic hydrocarbon
- found in automobile exhaust fumes, tobacco smoke and many foods (roasted/grilled meat)
- metabolites are mutagenic and carcinogenic

https://en.wikipedia.org/wiki/Benzo(a)pyrene

Aflatoxin

- aflatoxins are produced by certain molds
 - found e.g. in nuts, rice, spices
- metabolic activation of Aflatoxin B1 to epoxide and binding to guanine but also proteins

https://www.foodsafety-experts.com/food-safety/aflatoxin-detecti

How to test for mutagens?

Ames Test

- identification of mutagens
- Salmonella typhimurium
 - carry mutations in genes involved in histidine synthesis
 - capability of tested substance to create mutation so that bacteria can grow on histidine-free medium

20

• mimic metabolic conditions

Take Home Message

- liver is one of the main organs for metabolism
 - phase I and phase II
- processes in the liver that have an effect on drug
 - CYP polymorphism
 - first-pass effect
 - enterohepatic circulation
- examples for toxification processes:
 - Paracetamol
 - Methanol
 - N-Nitrosamine
 - Aromatic amines
 - Benzo[a]pyren
 - Aflatoxin B1
- metabolism: friend AND foe

Metabolic Activation!

Thank You For Your Attention!

Questions?

References

- Aktories, K. (2013). *Repetitorium Allgemeine und spezielle Pharmakologie und Toxikologie*. Elsevier Health Sciences Germany.
- Anaesthesiamcq.com, https://www.anaesthesiamcq.com/AcidBaseBook/ab8_6a.php
- Foodsafety-Experts.com, https://www.foodsafety-experts.com/food-safety/aflatoxin-detection
- Human Anatomy and Physiology, Book by: OpenStax
- Laborzentrum.org, http://www.laborzentrum.org/dokumente/nat2.pdf
- Stem.org.uk, https://www.stem.org.uk/system/files/elibraryresources/legacy_files_migrated/33419-RSCPharmacokineticprocessesmetabolism.pdf
- Vohr, H. (2010). *Toxikologie*. Weinheim: Wiley-VCH-Verl.
- Vohr, H. (2010). *Toxikologie der Stoffe*. Weinheim: Wiley-VCH.

CYP Polymorphism

- if CYP converts drug that has a strong effect into a substance that has a weaker effect
 - → poor metabolizers will have an exaggerated response to the drug and stronger side-effects
- if CYP converts drug into a substance that has a greater effect
 - → ultrarapid metabolizers will have an exaggerated response to the drug and stronger side-effects

