

Comprehensive Pneumology Center

From high-throughput screenings for Toxicology to Clinical trials

Erika Gonzalez Rodriguez

14/03/2019

Outline

- I. Overview of High-Throughput Screening (HTS)
 - A. HTS experimental workflow
 - B. Conventional high-throughput screening assays for toxicology:
 - 1. Biochemical
 - 2. Cell-Based assays
- II. Applications- HTS research platforms for Toxicology
- III. Conclusions

What is HTS?

(High Throughput Screening)

Automated tools to facilitate rapid execution of a large number and variety of biological assays that may include several substances in each assay.

Screening mode	Number of samples tested per day	Examples
Low-throughput screening	1–500	Animal models, assays for CYP-mediated metabolism combined with LC/MS/MS
Medium-throughput screening	500–10,000	Fluorescent cellular microscopic imaging assay, assays for determination of catalytic activities of oxygen-consuming enzymes
High-throughput screening	10,000-100,000	Fluorescent enzymatic inhibition assay, luciferase reporter gene assays
Ultra-highthroughput screening	>100,000	β -lactamase cell reporter assay, assay for quantification of 5-HT _{2C} receptor editing

HTS uses robotics to more efficiently predict how chemicals may affect human health

The trend to Miniaturization

At 100 plates/day, how long would it take to screen 1 MM samples?

Total Volume 96-well plate: 100 μl x 7 pts = 700 μl	Plate format	samples/day (wells/day)	Time to screen 1 MM samples
384-well plate: 40 μl x 7 pts = 280 μl	96-well	8,800 (9,600)	
	384-well	35,200 (38,400)	
1536-well plate: 5 μl x 7 pts = 35 μl	1536-well	140,800 (153,600)	

How is drug-discovery HTS different from Toxicology HTS?

HTS for Drug Development

HTS for Toxicology

Why was HTS adapted for Toxicity testing?

- Too many chemicals and too little data
- Very high cost
- HTS is used to identify signatures to predict hazard
- To rely less on animal toxicity data
- Integration of data with **bioinformatics** to generate predictive tools

CP

HTS experimental workflow

Conventional HTS assays

	Assay classification	Specific assay type
Biochemical assays (e.g. enzyme inhibition,	Homogeneous radioisotopic assays	Scintillation proximity assay
receptor-ligand binding)	Homogeneous non-radioisotopic assays	Colorimetric- or absorbance-based assay – enzyme-linked immunosorbant assay Luminescence-based assay – chemiluminescence – electrochemiluminescence Fluorescence-based assay – fluorescence-based assay – fluorescence polarization – fluorescence polarization – fluorescence resonance energy transfer – homogeneous time-resolved fluorometry – fluorescence correlation spectroscopy

Biochemical assays- Scintillation Proximity assay

Applications: Enzyme assays, molecular interactions, receptor binding

Applications: receptor-ligand or protein-protein interactions

Cellular assays	Cell proliferation assays	Dye uptake (e.g. Alamar blue, MTT) Oxygen sensor Radioactive isotope uptake
	Second messenger assays (e.g. ion channel)	lon flux assay Fluorescence-based assay – fluorometric imaging plate reader Automated patch clamp
	Reporter gene assays (e.g. GPCR)	Enzymatic assay – luciferase, β-lactamase, β-galactosidase Immunoassay Direct protein measurement – green fluorescent protein
	High-content screening	Multiple endpoint assay using fluorescent probes

MTT assay

Application:

Cell viability, proliferation

Pros: easy

Cons:

- Not very sensitive
- Does not distinguish between apoptosis and necrosis
- Based on mitochondrial activity

Cryopreserved Precision Cut Lung Slices (PCLS)

CPC

Application:

Toxicity of chemical allergens, biotoxins, nanomaterials, chemotherapeutic agents

HTS Platforms for Toxicology

TOX 21 Initiative

3-Phase Project Several HTS assays

Tox21 screened a **10K** chemical library using more than **42** assays, most of which tested immortal cancer cells, and produced more than **65 million** measurements

25

Phase I: More than 2000 chemical evaluated in 700 different HTS assays, covering about 300 signaling pathways

Phase II (Tox21): testing 1800 chemical for potential endocrine disruption

Phase III: HTS transcriptomics Human primary cells and stem cells Animal models in zebrafish

Cell-Based HTS and HCS Cytotoxicity screening panel

Analysis Method	High Content Screening	
Toxicity Markers	Cell loss Nuclear size Nuclear morphology Cell membrane permeability Mitochondrial membrane potential Mitochondrial mass Cytochrome c release	
Cell Туре	HepG2 (others available on request)	
Test Article Concentration	8 point dose response curve up to 500 µM or solubility limit (different concentrations available)	
Number of Replicates	3 replicates per concentration	
Quality Controls	0.5% DMSO (vehicle control) Chlorpromazine (positive control) Valinomycin (positive control)	
Test Article Requirements	3-5 mg solid (depending on molecular weight) or equivalent DMSO solution	
Data Delivery	Minimun toxic concentration Dose response curves	

Cellomics ArrayScan[®] VTI or Cellomics ToxInsight (Thermo Scientific)

Bridging the Gap from HTS to Clinical Trials

Testing for adverse effects of drugs

Three hypotheses:

- The AE was caused by the client's investigative drug, Drug A;
- 2. The AE was caused by prior courses of Drug B;
- 3. low residual levels of Drug B in patients could synergize with Drug A to induce the AE.

Final Remarks

VS.

3 days

12 years

- HTS techniques to rapidly and efficiently test chemicals for toxicity have the potential to assist regulators in assessing the risk novel compounds
- The Tox21 and ToxCast collaboration is combining technology, biology, and computational methods in order to advance in vitro testing for toxicology

Thank you!

https://www.youtube.com/watch?time_continue=513&v=CjQTVfXQ8N4

